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Abstract. We conduct an exhaustive survey of image thresholding
methods, categorize them, express their formulas under a uniform
notation, and finally carry their performance comparison. The
thresholding methods are categorized according to the information
they are exploiting, such as histogram shape, measurement space
clustering, entropy, object attributes, spatial correlation, and local
gray-level surface. 40 selected thresholding methods from various
categories are compared in the context of nondestructive testing
applications as well as for document images. The comparison is
based on the combined performance measures. We identify the
thresholding algorithms that perform uniformly better over nonde-
structive testing and document image applications. © 2004 SPIE and
IS&T. [DOI: 10.1117/1.1631316]

1 Introduction

In many applications of image processing, the gray levels
of pixels belonging to the object are substantially different

cal microscopy? extraction of edge field® image segmen-
tation in generat®!” spatio-temporal segmentation of video
imagest® etc.

The output of the thresholding operation is a binary im-
age whose one state will indicate the foreground objects,
that is, printed text, a legend, a target, defective part of a
material, etc., while the complementary state will corre-
spond to the background. Depending on the application, the
foreground can be represented by gray-level 0, that is,
black as for text, and the background by the highest lumi-
nance for document paper, that is 255 in 8-bit images, or
conversely the foreground by white and the background by
black. Various factors, such as nonstationary and correlated
noise, ambient illumination, busyness of gray levels within
the object and its background, inadequate contrast, and ob-
ject size not commensurate with the scene, complicate the
thresholding operation. Finally, the lack of objective mea-

from the gray levels of the pixels belonging to the back- sures to assess the performance of various thresholding al-
ground. Thresholding then becomes a simple but effectivego_”thms’ an_d the difficulty of extensive testing in a task-
tool to separate objects from the background. Examples of°fi€nted environment, have been other major handicaps.

thresholding applications are document image analysis, !N this study we develop taxonomy of thresholding al-
where the goal is to extract printed characterdogos, gorithms based on the type of information used, and we

graphical content, or musical scores: map processing2SS€ss their performance comparatively using a set of ob-

where lines, legends, and characters are to be fdsodne jective _segmentation quality metrics. We distinguish six
processing, where a target is to be deteétedd quality categories, namely, _thresholdmg algpnthms _based on the
inspection of material$® where defective parts must be €xploitation of: 1. histogram shape information, 2. mea-
delineated. Other applications can be listed as follows: cellSUrement space clustering, 3. histogram entropy informa-
image<® and knowledge representatidrsegmentation of tion, 4. image attrlbute_lnformatmn., 5. spatial information,
various image modalities for nondestructive testiNgT) and. 6. local chara_cterlstlcg. Ir_1 this assessment study we
applications, such as ultrasonic images in Ref. 10, eddyehvisage two major application areas of thresholding,
current images! thermal images? x-ray computed tomog- _hamely document binarization and segmentation of nonde-

raphy (CAT),'3 endoscopic image¥, laser scanning confo- ~ Structive testingNDT) images. .
A document image analysis system includes several

image-processing tasks, beginning with digitization of the
—P 02016 received Feb. 7. 2002- revised  received Jan. 23 2008 document and ending with character recognition and natu-
aper receive en. 7, ; revised manuscript receive an. , ; ac- H H
cepted for publication May 27, 2003, Cral_ language processing. The thresholding step can affect
1017-9909/2004/$15.00 © 2004 SPIE and IS&T. quite critically the performance of successive steps such as
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classification of the document into text objects, and theing applications, are given in Sec. 10. Finally, Sec. 11
correctness of the optical character recognii@CR). Im- draws the main conclusions.

proper thresholding causes blotches, streaks, erasures on

the document confounding segmentation, and recognition ) o

tasks. The merges, fractures, and other deformations in the Categories and Preliminaries

character shapes as a consequence of incorrect thresholding/e categorize the thresholding methods in six groups ac-
are the main reasons of OCR performance deterioration. cording to the information they are exploiting. These cat-

In NDT applications, the thresholding is again often the egories are:

first critical step in a series of processing operations such as
morphological filtering, measurement, and statistical as-
sessment. In contrast to document images, NDT images can
derive from various modalities, with differing application
goals. Furthermore, it is conjectured that the thresholding
algorithms that apply well for document images are not
necessarily the good ones for the NDT images, and vice
versa, given the different nature of the document and NDT
images.

There have been a number of survey papers on thresh-
olding. Lee, Chung, and Pdrkconducted a comparative
analysis of five global thresholding methods and advanced
useful criteria for thresholding performance evaluation. In
an earlier work, Weszka and Rosenf8ldiso defined sev-
eral evaluation criteria. Palumbo, Swaminathan and
Srihar?* addressed the issue of document binarization com-
paring three methods, while Trier and Jalmad the most
extensive comparison bagis9 methodsin the context of

. Clustering-based methods,

1. histogram shape-based methods, where, for example,

the peaks, valleys and curvatures of the smoothed
histogram are analyzed

where the gray-level
samples are clustered in two parts as background and
foreground(objecy, or alternately are modeled as a
mixture of two Gaussians

. entropy-based methods result in algorithms that use

the entropy of the foreground and background re-
gions, the cross-entropy between the original and bi-
narized image, etc.

. object attribute-based methods search a measure of

similarity between the gray-level and the binarized
images, such as fuzzy shape similarity, edge coinci-
dence, etc.

. the spatial methods use higher-order probability dis-

tribution and/or correlation between pixels

6. local methods adapt the threshold value on each pixel
to the local image characteristics.

character segmentation from complex backgrounds. Sahoo
et al?? surveyed nine thresholding algorithms and illus-
trated comparatively their performance. GlasBeyointed

out the relationships and performance differences betweeny, yhe sequel, we use the following notation. The histogram
11 histogram-based algorithms based on an extensive stasq the probability mass functici®MF) of the image are

tistical study. indicated. res ; _
) . , pectively, by(g) and by p(g), g=0..G,
,Th's Survey 'and evaluation, on the one hand, rgpresent@vheree is the maximum luminance value in the image,
a timely effort, in that about 60% of the methods dlscussedtypica"y 255 if 8-bit quantization is assumed. If the gray-

and 1rs'aezfserenced are dating after ;he last surveys in this, o 1ue range is not explicitly indicated &8, Gmals it

area.™ Wwe _descrlbe 40 thres_holdlng algorlthms with th_e will be assumed to extend from O @. The cumulative

idea underlying them, categorize them according to the IN-yrobability function is defined as

formation content used, and describe their thresholding

functions in a streamlined fashion. We also measure and 9

rank their performance C(_)mparatively in two different con- p(g)zz p(i).

texts, namely, document images and NDT images. The im- i=0

age repertoire consists of printed circuit bodRCB) im- _ ) ) )

ages, eddy current images’ thermal images’ microscope Ce"ﬂ IS ass_umed that the PM.F.IS e_stlmated from the hlstogram

images, ultrasonic images, textile images, and reflectiveOf the image by normalizing it to the total number of

surfaces as in ceramics, microscope material images, a§amples. In the context of document processing, the fore-

well as several document images. For an objective perfor-ground(objecd becomes the set of pixels with luminance

mance comparison, we employ a combination of five crite- Values less thaii, while the background pixels have lumi-

ria of shape segmentation goodness. nance value above this threshold. In NDT images, the fore-
The outcome of this study is envisaged to be the formu-9round area may consists of darkemore absorbent,

lation of the large variety of algorithms under a unified G€NSEr, etg.regions or conversely of shinier regions, for

notation, the identification of the most appropriate types of ?hxsrlgrt)tlgr' rc]ggteer' trgorehr;rfée;:rtgleégle:cst (leienseeérzt(t:).r,.reh?g?nti.alrr:
binarization algorithms, and deduction of guidelines for XIS, W J bp '9

novel algorithms. The structure of the work is as follows: the background, obviously the set of pixels with luminance

. . ) ' ter tharT will be defined as the foreground.
Notation and general formulations are given in Sec. 2. In 9'¢2 .
Secs. 3 to 98 respectively histog?am shape-based The foregroundobjec) and background PMFs are ex-

, . . ressed ap¢(g), 0<g<T, andpy(g), T+1<g=<gG, re-
clustering-based, entropy-based, object attrlbute—basedlp . .
spatial information-based, and finally locally adaptive Spectively, wherdl is the threshold value. The foreground

thresholding methods are described. In Sec. 9 we presen"fmd background area probabilities are calculated as:

the comparison methodology and performance criteria. The T G
evaluation results of_ image th(esholdlng methods, sepap (T)=p,= E p(g), Pu(T)=Py= 2 p(g). ()
rately for nondestructive inspection and document process- g=0 g=T+1
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Table 1 Thresholding functions for the shape-based algorithms.

Top=arg max{[p(g)—Hull(g)]} by considering object

24
Shape_Rosenfeld attributes, such as busyness.

Topt= vifirst terminating zero of f(g)}+ (1)
x{first initiating zero of f(g)}

0<y=<1, p(g)=d/dg[ p(g)* smoothing_kernel(g)],
where y=1 and kernel size is 55

Shape_Sezan®?

Ton=(T°, valley at the highest resolution| 7*,... T¥,

Shape_Olivio given valleys at k lower resolutions), k=3
T G
Shape_Ramesh® Top=min| >, [by(N—gP+ >, [b(—gP
- g=0 g=T+1

where by (T)=m(T)/P(T), bo(T)=my(T)[1-P(T)]

, 1
Tont = M 57 aexp(—j2ngiZ56)]°

where {a}?_, the n’th order AR coefficients

Shape_Guo?®

The Shannon entropy, parametrically dependent on theduced in a paper by Sezan and to the clustering-based
threshold valueT for the foreground and background, is thresholding method first proposed by Otsu.
formulated as:

3 Histogram Shape-Based Thresholding
Methods

This category of methods achieves thresholding based on
2 the shape properties of the histogrdeee Table L The
shape properties come into play in different forms. The
Ho(T)=— 2  py(9)logps(g). distance from the convex hull of the histogram is investi-
g=THt gated in Refs. 20, and 24—-27, while the histogram is forced
into a smoothed two-peaked representation via autoregres-

;Ehﬁ sTumV\(l)rf] the;e two Is gxprelssled :‘iT):th(T.) sive modeling in Refs. 28 and 29. A more crude rectangular
o(T). en the entropy Is calculated over the input approximation to the lobes of the histogram is given in

image distributionp(g) (and not over the class distribu-  Refs 30 and 31. Other algorithms search explicitly for

tions), then obviously it does not depend on the thresfiold  peaks and valleys, or implicitly for overlapping peaks via
and hence is expressed simplythsFor various other defi-  cypyature analysi®—3*

nitions of the entropy in the context of thresholding, with
some abuse of notation, we use the same symbditk ©F) Convex hull thresholding. Rosenfeld's methdd
andHy(T). (Shape Rosenfeldlis based on analyzing the concavities of
The fuzzy measures attributed to the background andthe histogranh(g) vis-avis its convex hull, Hullg), that is
foreground events, that is, the degree to which the graythe set theoretic differencéHull(g)—p(g)|. When the
level, g, belongs to the background and object, respectively, convex hull of the histogram is calculated, the deepest con-
and are symbolized by(g) and u,(g). The mean and  cavity points become candidates for a threshold. In case of
variance of the foreground and background as functions ofcompeting concavities, some object attribute feedback,
the thresholding leverl can be similarly denoted as: such as low busyness of the threshold image edges, could
be used to select one of them. Other variations on the theme
T can be found in Weszka and Rosenféld®and Halada and
m(T)= 2, gp(g) oZ(T)=2> [g—m(T)1?p(9), (3)  Osokov?® Sahasrabudhe and Guptdave addressed the
9=0 9=0 histogram valley-seeking problem. More recently,
WhatmougFR® has improved on this method by considering
the exponential hull of the histogram.

:
He(T)= —920 pr(9)logps(9),

G

T

G
my(T)=_ 2, 9p(g)
o= Peak-and-valley thresholding. Sezar? (Shape Sezan

G ) carries out the peak analysis by convolving the histogram
20T — _ 2 function with a smoothing and differencing kernel. By ad-
op(T) g; 1 [9=My(DIp(Q). justing the smoothing aperture of the kernel and resorting

to peak merging, the histogram is reduced to a two-lobe
We refer to a specific thresholding method, which was pro- function. The differencing operation in the kernel outputs
grammed in the simulation analysis and whose formula ap-the triplet of incipient, maximum, and terminating zero-
pears in the table, with the descriptor, “categoaythor.” crossings of the histogram lol&&=[(e;,m;,s;),i=1,...2].
For example, Shapeé&ezan and ClusteOtsu, refer, re-  The threshold sought should be somewhere between the
spectively, to the shape-based thresholding method introirst terminating and second initiating zero crossing, that is:
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Top= Y€1+ (1—7)s;, O<y<1. In our work, we have lobes of a histogram(assumed distiﬂ);t some authors
found that y=1 yields good results. Variations on this Search for the midpoint of the peaks:*! In Refs. 42-45,
theme are provided in Boukharouba, Rebordao, andthe algorithm is based on the_ flttl_ng of the_mlxture of Gaus-
Wendel*® where the cumulative distribution of the image is Sians. Mean-square clustering is used in Ref. 46, while
first expanded in terms of Tschebyshev functions, followed fuzzy clustering ideas have been applied in Refs. 30 and 47.
by the curvature analysis. T3abbtains a smoothed histo- S€€ Table 2 for these algorithms.

gram via Gaussians, and the resulting histogram is investi- . . : s . i
gated for the presence of both valleys and sharp curvaturd€/aiive thresholding. Riddler® (Clustet Riddlep ad
vanced one of the first iterative schemes based on two-class

points. We point out that the curvature analysis becomeSGaussian mixture models. At iteration a new threshold

effective when the histogram has lost its bimodality due to =" . . : ’

the excessive overlapping of class histograms T, is established using the average of the foreground and
In a similar vein. Carlott® and Olivé* (Shapé_OIivio) background class means. In practice, iterations terminate

considerthe multiscale analysis of the PMF and interpret \I/_vhen the dcgarr%%e*{sTaernﬂéPbec?m% fvl;fﬂc[er!TIy Smf‘rl]l'

its fingerprints, that is, the course of its zero crossings andoggnﬁ1 ?1?5 mgthognYanrr?isjn d rl—?gr”:’fe(eCIus?efl\r(ne:r?r:DTr(?i- i

extrema over the scales. In Ref. 34 using a discrete dyadic[ia“éeS the midpoiﬁt between the two assumed peaks of the

wavelet transform, one obtains the multiresolution analysis,.; _ ; ;

of the histogram. p(g)—p(g)* u(q), S—12 wherey histogram ag)mig= (ImaxT Imin)/2, Wheregay is the high-

gram,p(9) =p(9)” ¥<(9). 1oy est nonzero gray level angl,;, is the lowest one, so that
(9max—9min) becomes the span of nonzero gray values in

p°(g)=p(g) is the original normalized histogram. The
threshold is defined as the vallépinimum) point follow- 6 histogram. This midpoint is updated using the mean of
the two peaks on the right and left, that is, g3

ing the first peak in the smoothed histogram. This threshold

position is successively refined over the scales starting from_ (g Y

the coarsest resolution. Thus starting with the valley point > Peakl’ Fpeak2ie:

T® at thek'th coarse level, the position is backtracked to Clustering thresholding. Otsf® (Cluster Otsu sug-

the corresponding extrema in the higher resolution histo-gested minimizing the weighted sum of within-class vari-

gramsp*~1(g)...p%(g), that is, TV is estimated by re-  ances of the foreground and background pixels to establish

fining the sequencél'(l)...T(k) (in our work k=3 was an optimum threshold. Recall that minimization of within-

used. class variances is tantamount to the maximization of
between-class scatter. This method gives satisfactory results

Shape-modeling thresholding. Ramesh, Yoo, and When the numbers of pixels in each class are close to each
Sethi® (Shape Ramesh use a simple functional approxi- other. The Otsu method still remains one of the most refer-

mation to the PMF consisting of a two-step function. Thus enced thresholding methods. In a similar study, threshold-
the sum of squares between a bilevel function and the hising based on isodata clustering is given in VelaSt8ome
togram is minimized, and the solution @, is obtained ~ limitations of the Otsu method are discussed in Lee and
by iterative search. Kampke and KoBehave generalized Park:™ Liu and Li>" generalized it to a 2-D Otsu algorithm.
the shape approximation idea.

In Cai and Liu?® the authors have approximated the
spectrum as the power spectrum of multi-complex expo-

nential signals using Prony’s spectral analysis method. Apixels: p(9)=P(T).pi(g) +[1—P(T)].py(g). Lloyd®

similar all-pole model was assumed in GhiShape Guo). (Cluster_Lloyd) considers equal variance Gaussian density
We have used a modified approach, where an autoregresgnctions, and minimizes the total misclassification error
sive (AR) model is used to smooth the histogram. Here oneyia an iterative search. In contrast, Kittler and
begins by interpreting the PMF and its mirror reflection |llingworth***° (Cluster Kittler) removes the equal vari-
aroundg=0, p(—g), as a noisy power spectral density, ance assumption and, in essence, addresses a minimum-
given byp(g)=p(g) for g=0, andp(—g) for g=<0. One error Gaussian density-fitting problem. Recently Cho,
then obtains the autocorrelation coefficients at ldgs Haralick, and Yt* have suggested an improvement of this.
=0..G, by the inverse discrete fourier transfottbFT) of ~ thresholding method by observing that the means and vari-
the original histogram, that is(k) = IDFT[P(g)]. The au- ances e_st|m_ated from truncz_ited distributions result in a
tocorrelation coefficientér (k)} are then used to solve for 21as: -rl;h's b"'ﬁ. becomes ngnceable, h(c)j\_/vever,.ot:ﬂ)élwhen—
then'th order AR coefficientda;}. In effect, one smoothes ever the two histogram modes are not distinguishable.

the histogram and forces it to a bimodal or two-peaked Fuzzy clustering thresholding. Jawahar, Biswas, and
representation via then'th order AR model 6 Ray*’ (Cluster Jawahar 1), and Ramesh Yoo, and Sethi
=1,2,3,4,5,6). The threshold is established as the mini-assign fuzzy clustering memberships to pixels depending
mum, resting between its two pole locations, of the result- on their differences from the two class means. The cluster
ing smoothed AR spectrum. means and membership functions are calculated as:

Minimum error  thresholding. These methods
assume that the image can be characterized by a mixture
distribution of foreground and background

4 Clustering-Based Thresholding Methods

In this class of algorithms, the gray-level data undergoes a 3 9.p(9)1i(g)
clustering analysis, with the number of clusters being setm,= 920 i Tk ,
always to two. Since the two clusters correspond to the two 2 g-oP(9) uk(9)

=f,b,
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Table 2 Thresholding functions for clustering-based algorithms.

o mf(Tn)+mb(Tn)

Topt= ,!Tl—z

Cluster_Riddler3* where
T, G
mAT=2, ap(g) mu(T= >, gp(g)
g=0 g=Tp+1
g;nd
. Topt:(gmaxfgmin) 2 p(g)

Cluster_Yanni* 9= Gmin

P(DIL—=P(DImAT) —my( T)]z]

Top=2rg "“"X[ PN+ [1—P(DIAT

Cluster_Otsu?*®

B _|m{T)+my(T) o? 1-P(T)
Topt=arg min 5 + D —m(T) log AT
Cluster_Lloyd?* o2 is the variance of the whole image.
Top=2arg min{P(T)log o T)+[1—P(T)]log a(T)
Cluster_Kittler? —P(T)log P(T)—[1—P(T)]log[1—P(T)]} where

{o(T),0,(T)} are foreground and background
standard deviations.

Top=arg equall u7(9) = u4(9)]
g

Cluster_Jawahar_1%" where .

d(g,mk):zo (g—my? k=b,f
pa

Topi=arg equall u7(9) = up(9)]
g

where

Cluster_Jawahar_24" 1 2
g—my
dg.my)= > (T) +log oy—log By, k=b,f
k

5 Entropy-Based Thresholding Methods

1
ri(Q)= d(g,mp |71 mp(9)=1=ni(9). This class of algorithms exploits the entropy of the distri-
(d(g mb)) bution of the gray levels in a scene. The maximization of
' the entropy of the thresholded image is interpreted as in-
_ _ , , dicative of maximum information transft->° Other au-
I_n these expressiond[...) is theEuclidean distance _fu_nc— thors try to minimize the cross-entropy between the input
tion between the gray-valigand the class mean, whilds  gray-level image and the output binary image as indicative
the fuzziness index. Notice that for=1, one obtains the of preservation of informatio%_sg or a measure of fuzzy
K-means clustering. In our experiments we used?. In a entrop)/?oﬁl Johannsen and Biffé and Pal, King, and
second method proposed by Jawahar, Biswas, and’Ray Hashinf® were the first to study Shannon entropy-based
(Cluster_Jawahar 2), the distance function and the mem- thresholding. See Table 3 for these algorithms.
bership function are defined &or k=f,b):

Entropic thresholding. Kapur, Sahoo, and Wony

2 (Entropy_Kapun consider the image foreground and back-

+log o«—log B, ground as two different signal sources, so that when the
sum of the two class entropies reaches its maximum, the
image is said to be optimally thresholded. Following this

38 op(9)ui(9) idea, Yen, Chang, and ChatigEntropy_Yen) define the

= - - , entropic correlation as
25 oP()[#](9) + pE(9)] P '

my

1
d(g.mk):§<g

Bk

TC(T)=Cp(T) +C(T
S8 op(9) 1i(9)(g—my)? (T)=Cu(T)+Cy(T)

T G
=S oui@p(e) =— Iog[ > { P(9) H — Iog’ >
g

2_
o=

p(9) r
o |P(T) T [1-P(T)
In either method, the threshold is established as the cross-

over point of membership functions, i.e.Tox  and obtain the threshold that maximizes it. This method
=argequalui(g)=pup(9)}. corresponds to the special case of the following method in
¢]
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Table 3 Thresholding functions for entropy-based algorithms.

Top=arg max[H,(T)+Hb(7)] with

Entropy_Kapur®? LI p(g 5 plg). P
H, and H — =
(n= E 4P D= 20 7 9B
Top(T)=arg max{Cb(T)+ C{T)} with
Entropy_Yen®* B pg) S P r
Cb(T)—Iog[Z G and C{T)=—log ngH AT
Top= Trygl Pyt Iw B+ 5 Troy W Bot Tpap-[1— Py + 7w Bs]

Tk
where P[T]=2, p(g), k=1,2,3, w=P[T5]-P[T] and
Entropy_Sahoo®® g=0
(1,21) if |[Ti— Tzl<5 and [T~ Ti3y|<5 or [T~ T(»|>5 and [Ty~ Tj3|>5
By,B,,Bs=1 (0.1,3) if [Ty=Tiz|<5  and | T T3 >5
(3,1,0) if |T[1]7 T[2]|>5 and |T[2]7 T[3]|S5
Top=arg equall H{ T) = aH(T)] where
alog P(T) log[1—-A(T)]

Entropy_Pun_a®! e }
logimax(p(D),.oNT 4~ logimax(p(T+1),..p(G)]}

a=arg max

Entropy_Pun_b% Topt= arg[z p(g)=(0.5+]0.5—a|) ]

optimizing histogram symmetry by tuning «.

Topt=arg min

T G
g g
; 9P(g)og . +g:EM gn(gllog W}

where 2 g:E mg T) and E gzz mp(T).

g=T g=T g=T g=T
opt =arg min{H(T)} where H(T) is

Entropy_Li%%7

Entropy_Brink®® my(T) g

+glog )

; p(g) [mmlog +glog mm +2 p(g) [mb (Tlog

Topr=arg maX{Hf(D+Hb( N}

) PO o)
where HN%gZ PAgog o+ akg)og ng)}
Entropy_Pal®® Pu(9) a4(9)
Hy( )= 2 pyglog 229 o) 9oy pb(g)}
1(779

_ my(M?
and qgdg)=exp[—m(T)] ,9=0,...T, g )—exp[—mb(T)]T,g—T+l,...G.
Topt=2arg mm{\Hf(T) Hb(T)\} where

Entropy_Shanbag®°

G
)
HAD= E g((% log[ud9)], H( = 2 .1 p(F‘z'l') log[ uy(9)]

max H(A pa)=— == [Q(A)log Q(A)+ Q(Ap)log Q(Ap)]

where w4 is Zadeh’s membership with parameters a,b,c, and

QA= X, plg), QA= E p(g)

w@reA; wo)EAy

Iog 2
Entropy_Cheng®*

Ref. 55(Entropy_Sahoo for the Renyi powep=2. Sahoo, 1 G p(g) 1°
Wilkins, and Yeager combine the results of three different Hf=-— In[ > — } ]
threshold values. The Renyi entropy of the foreground and 1=p [¢=T+11=P(T)
background sources for some parametare defined as:
T ) They then find three different threshold values, nanigjy,
Hp= 1 In[ S p(g)} ] and T,, andT3, by maximizing the sum of the foreground and
1-p [ §=0[P(T) background Renyi entropies for the three range,00
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<p<1, p>1, andp=1, respectively. For exampl&, for background regions, as in I5%1I(Entropy Pal. Usugg)the
p=1 corresponds to the Kapur, Sahoo and Wdrlgresh- ~ maximum entropy principle in Shore and Johan

old value, while forp>1, the threshold corresponds to that corresponding PMFs are defined in terms of class means:
found in Yen, Chang, and CharyDenoting T;y;, T[z],

andT[3] as the rank ordered,, T,, andT5 values, “op- f( )g

timum” T is found by their weighted combination. ar(9)=exp —my(T)] 9=0...T,
Finally, although the two methods of Pin?have been

superseded by other techniques, for historical reasons, we b( )9

have included themEntropy_Punl, EntropyPun2. In ap(g)=exd —my(T)] , g=T+1,.G.

Ref. 51, Pun considers the gray-level histogram as a
G-symbol source, where all the symbols are statistically
independent. He considers the ratio of thgosteriorien-  Wong and Sahd6 have also presented a former study of
tropy H'(T) = — P(T)log[ P(T)]-[1—P(T)Jlog[1— P(T)] as thresholding based on the maximum entropy principle.

a function of the threshold to that of the source entropy

Fuzzy entropic thresholding. Shanbaff
T G (Entropy_Shanbagconsiders the fuzzy memberships as an
_ indication of how strongly a gray value belongs to the
H(T)= Z (@)logip(g)] g;+l P(9)loglp(g)]- background or to the foreground. In fact, the farther away a
gray value is from a presumed threshdlde deeper in its
This ratio is lower bounded by region, the greater becomes its potential to belong to a
specific class. Thus, for any foreground and background
H’ (T) alogP(T) pixel, which isi levels be[ow ori levels above_ a given
H ~ |logimaxp(1),....p(T)]} thresholdT, the membership values are determined by
log(1—-P(T)) p(M+...+p(T=1-1)+p(T—i)
(1 N
(=) ogimar p(T+1),..p(G) T} p(T=1)=0.5+ 2P(T) ’

In a second method, the threshSldepends on the anisot-
ropy parameter, which depends on the histogram asym-
metry.

that is, its measure of belonging to the foreground, and by

(TH+D)+...+p(T=1+i)+p(T+i)
2(1-P(T)) ’

P
Cross-entropic thresholding. Li, Lee, and Tamf®  # p(T+1)=0.5+

(Entropy_Li) formulate the thresholding as the minimiza-
tion of an information theoretic distance. This measure is respec“ve'y Obv|ous|y on the gray value Correspond|ng to

the Kullback-Leibler distance the threshold, one should have the maximum uncertainty,
() such thatu(T)=up(T)=0.5. The optimum threshold is
q(g inimi .
D(q,p)= E q(g)log—— o Ifoc?ggd as ther that minimizes the sum of the fuzzy entro

of the distributions of the observed imagég) and of the Top=2arg mi{|[Ho(T)—Hy(T)|},
reconstructed imagg(g). The Kullback-Leibler measure T

is minimized under the constraint that observed and recon-

structed images have identical average intensity in their T p(g)
foreground and background, namely the condition Ho(T)=— E . BT ———log[ uo(9)1,

> g=>, m(T) and >, g=>, my(T). G

=T =T =T =T p(9)
’ ’ ’ ’ Hi(T)=— ;T:H:L——F’(T)log[“l(g)]’
Brink and Pendoc® (Entropy_Brink) suggest that a ’

threshold be selected to minimize the cross-entropy, defmedSlnce one wants to get equal information for both the fore-

as ground and background. Cheng, Chen, and Sun’s méthod
G (Entropy_Cheng relies on the maximization of fuzzy event
H(T)—E q(g)long N 2 (9)lo P(9) entropies, namely, the foregrourt and background,

a(g)” subevents. The membership function is assigned using Za-
deh’s S function in Ref. 66. The probability of the fore-

The cross-entropy is interpreted as a measure of data conground subeven®(A;) is found by summing those gray-

sistency between the original and the binarized images.value probabilities that map into th& subevent:

They show that this optlmum threshold can also be found

by maximizing an expression in terms of class means. A

variation of this cross-entropy approach is given by specifi- Q(A;) = Z p(g)

cally modeling thea posterioriPMF of the foreground and (@) €A

p(9)
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Table 4 Thresholding functions for the attribute-based algorithms.

Topr=arg equall my=b1(T),my=b,(T),m;=bs(T)]
G

Attribute_Tsai’ K K
where mk=z p(g)g* and b= Pmt+Pym§
=0

) 6 Topt: arg maX[Egraym Ebinary( nl,
Attribute_Hertz where Eg.,: gray-level edge field, Epnay(T) binary
edge field

G
Top=arg min{ - ,\—Hlo—gz gZO [udg.Diog(udg.7)]

Attribute_Huang® +[1-ud9,7) Jlog[ 1- 1A 9. T) ]p(g)}
G

where ufI(i,j), T]= GHIG)—mAD)|

Topt=Arg[most stable point of s-sized object function
N«(T)]

Topi=arg max{—pylog p—(1—pylog(1—p)

_ o +pAmlog mwytmprl0g mp) + (1~ pp)(7rg, lOG g
Attribute_Leung + Ty 109 Tpp)}

where = Prob(segmented as background|belongs
to the foreground) etc.

Attribute_Pikaz’®

Areal u(T)]
Attribute_Pal®® Topt=arg max{Compactness| u(T)]} = Perm (T
over all foreground regions.
and similarly for the background. match the first three moments of the binary image. The

gray-level momentsn, and binary image moments, are

defined, respectively, as:
QA= X p(g) as H(A un) pecively

n(g) €Ay G
1 m.= >, p(g)gk and b,=P;mk+P,mk.
=~ log 2l QANI0GQ(A) + Q(AI0g QA . <%0 T

Cheng and Tsét reformulate this algorithm based on neu-

In other wordsQ(A;), i=f,b corresponds to the probabili- 3| networks. Delp and Mitchéft have extended this idea
ties summed in thg domain for all gray values mapping to quantization.

into the A; subevent. One maximizes this entropy of the

fuzzy event over the parametdis b, 9 of the S function. Edge field matching thresholding. Hertz and Schaféf

The thresholdT is the valueg satisfying the partition for  (Attribute_Hertz) consider a multithresholding technique

ua(g)=0.5. where a thinned edge field, obtained from the gray-level
imageE,y, is compared with the edge field derived from

) ) o the binarized imageEpinan(T). The global threshold is

6 Thresholding Based on Attribute Similarity given by the value that maximizes the coincidence of the

These algorithms select the threshold value based on som&vo edge fields based on the count of matching edges, and

attribute quality or similarity measure between the original penalizes the excess original edges and the excess thresh-

image and the binarized version of the image. These at-olded image edges. Both the gray-level image edge field

tributes can take the form of edge matchfig® shape  and the binary image edge field have been obtained via the

compactnes®®® gray-level moment&?~? connectivity” Sobel operator. In a complementary study, Venkatesh and

texture’®’® or stability of segmented object<® Some  Rosin® have addressed the problem of optimal threshold-

other algorithms evaluate directly the resemblance of theing for edge field estimation.

original gray-level image to binary image resemblance us- o i .

ing fuzzy measur&"° or resembiance of the cumulative Fuzzy similarity thresholding. Murthy and Pél” were

probability distribution€® or in terms of the quantity of the first to discuss the mathematical framework for fuzzy

information revealed as a result of segmentafioisee  thresholding, while Huang and WalfigAttribute_Huang

Table 4 for examples. proposed an index of fuzziness by measuring the distance
between the gray-level image and its crigmary) version.
Moment preserving thresholding. Tsaf® In these schemes, an image set is represented as the double

(Attribute_Tsai) considers the gray-level image as the array F={I(i,j),us[1(i,j)]}, where O<pu[l(i,j)]<1
blurred version of an ideal binary image. The thresholding represents for each pixel at locati@rj) its fuzzy measure
is established so that the first three gray-level momentsto belong to the foreground. Given the fuzzy membership

Journal of Electronic Imaging / January 2004/ Vol. 13(1) /153



Sezgin and Sankur

value for each pixel, an index of fuzziness for the whole N

image can be obtained via the Shannon entropy or the YagPerim( )= >, |u[1(i,j)]—u[1(i,j+1)]]
er’'s measuré® The optimum threshold is found by mini- hj=1

mizing the index of fuzziness defined in terms of class
(foreground, backgroundnedians or meansi(T), my(T)
and membership functions[I(i,j),T], up[1(i,j),T]. Ra-
mar et al’”® have evaluated various fuzzy measures for o _
threshold selection, namely linear index of fuzziness, qua-Where the summation is taken over any region of nonzero
dratic index of fuzziness, logarithmic entropy measure, andmembership, and is the number of regions in a seg-

exponential entropy measure, concluding that the linear in-mented image. Pal and RosenfélgAttribute_Pa) evalu-
dex works best. ated the segmentation output, such that both the perimeter

and area are functions of the threshdld The optimum
Topological stable-state thresholding. Rus$ has noted  threshold is determined to maximize the compactness of the
that experts in microscopy subjectively adjust the thresh-segmented foreground sets. In practice, one can use the
olding level at a point where the edges and shape of thestandard S function to assign the membership function at
object get stabilized. Similarly Pikaz and Averbdth the pixel 1(i,j): w[I(i,j)]=91(,j);a,b,c], as in
(Attribute_Pikaz pursue a threshold value, which becomes Kaufmann® with crossover poinb=(a+c)/2 and band-
stable when the foreground objects reach their correct sizewidth Ab=b—a=c—b. The optimum thresholdT is

Th|5 iS.inStrumented via the Size'thresh(.)ld fUnCMT),. found by exhaustive|y Searching over tHE,Ab) pairs to
which is defined as the number of objects possessing aiinimize the compactness figure. Obviously the advantage
leasts number of plerS. The threshold is established in the of the Compactness measure over other indexes of fuzziness
widest possible plateau of the graph of g(T) function. s that the geometry of the objects or fuzziness in the spatial
Since noise objects rapidly disappear with shifting the domain is taken into consideration.

threshold, the plateau in effect reveals the threshold range Other studies involving image attributes are as follows.
for which foreground objects are easily distinguished from |n the context of document image binarization, Liu, Srihari,
the background. We chose the middle value of the largestand Fenrich*">have considered document image binariza-
sized plateau as the optimum threshold value. tion based on texture analysis, while Bdihas taken into

. . ) ) consideration noise attribute of images. &udevelops a
Maximum information thresholding. Leung and Laff  scheme based on morphological filtering and the fourth or-
(Attribute_Leung define the thresholding problem as the yeor central moment. Solihin and Leedf&nhave devel-
change in the uncertainty of an observation on specificatiqnoped a global thresholding method to extract handwritten
of the foreground and background_ classes_. The presentatloraartS from low-quality documents. In another interesting
of any foreground/background information reduces the gnnroach, Aviad and Lozinskf have introduced semantic
class uncertainty of a pixel, and this information gain is thresholding to emulate the human approach to image bi-
measured by(p) — aH(ps) —(1—a)H(py), whereH(p)  narization. The semantic threshold is found by minimizing
is the initial uncertainty of a pixel and is the probability  measures of conflict criteria, so that the binary image re-
of a pixel to belong to the foreground class. The optimum sembles most to a verbal description of the scene. Gallo
threshold is established as that generating a segmentatiognd Spinell8” have developed a technique for thresholding
map that, in turn, minimizes the average residual uncer-and isocontour extraction using fuzzy arithmetic.
tainty about which class a pixel belongs after the seg-Fernande? has investigated the selection of a threshold in
mented image has been observed. Such segmentatiopatched filtering applications in the detection of small tar-
would obviously minimize the wrong classification prob- get objects. In this application, the Kolmogorov-Smirnov
ability of pixels, in other words, the false alarms, (pixel  distance between the background and object histograms is
appears in the foreground while actually belonging to the maximized as a function of the threshold value.
backgroungl and the miss probabilityr,;. According to

this notationm¢;, 7, denote the correct classification con- 7 Spatial Thresholding Methods

ditionals. The optimum threshold corresponds to the maxi- Thjs class of algorithms utilizes not only gray value distri-

mum decrease in uncertainty, which implies that the seg-ptjon but also dependency of pixels in a neighborhood, for
mented image carries as close a quantity of information asgyxample, in the form of context probabilities, correlation

N
+i,2:1 |1 (i,§) 1= [+ 1)),

that in the original information.

Enhancement of fuzzy compactness thres-
holding. Rosenfeld generalized the concept of fuzzy
geometny’® For example, the area of a fuzzy set is defined

functions, cooccurrence probabilities, local linear depen-
dence models of pixels, 2-D entropy, etc. One of the first to
explore spatial information was Kirby and Rosenf&ld,

who considered local average gray levels for thresholding.
Others have followed using relaxation to improve on the

as binary map as in Refs. 89 and 90, the Laplacian of the

images to enhance histografis, the quadtree
thresholding’* and second-order statistitsCooccurrence
probabilities have been used as indicators of spatial depen-
dence as in Refs. 93-96. The characteristics of “pixels
jointly with their local average” have been considered via
their second-order entropy as in Refs. 97—-100 and via the
fuzzy partitioning as in Refs. 101, 102, and 103. The local

N
Ared )= X, pulI(i,j)]

i,j=1

while its perimeter is given by
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Table 5 Thresholding functions for spatial thresholding methods.

Top=arg max{Hpy(T)+HK{T)] or  Tou=arg max{Hp(T)
Spatial_Pal_1 and +HpdT)]
Spatial_Pal_2%* where Hp(T), HpdT), HidT), Hon(T) are the co-
occurrence entropies

(Topt Top) =arg minflog[ P(T, T)[1— P(T, )1+ H,/ (T, T)
+H, [1-P(T, D]}

where
L& ped pad
i3 S P99, POY
=1 =1 P(T,T)  P(T,T)
and
H——}G‘, D Pg.9 log P(9.9)
b— — —
Spatial_Abutaleb®” =T [1-PA(T, )] [1-P(T,T)]

SXs
Topt=2arg min 7; pl;'OCk( T)-log pilock( 8
=0

where pl°(T) is the probability of sxs size blocks
containing k whites and s?— k blacks
Spatial_Beghdadi'®* (5=2,4,8,16)

Topt=Max Hiyzzy(foreground) + Hy,,, (background)

a,b,c{

o where Hiuzzy(A)== 2, ma(X,)P(X,y)log pxy),
Xy

Spatial_Cheng
{a,b,c}, the S-function parameters; {A=foreground,
background}; {x,y}={ pixel value, local average value
within 3X3 region}.

spatial dependence of pixels is captured in Ref. 104 as bi- Chang, Chen, Wang and Althodsestablish the thresh-
nary block patterns. Thresholding based on exphcjios- old in such a way that the cooccurrence probabilities of the
teriori spatial probability estimation was analyzed in Ref. original image and of the binary image are minimally di-
105, and thresholding as the max-min distance to the ex-vergent. As a measure of similarity, the directed divergence
tracted foreground object was considered in Ref. 106. Seepr the Kullback-Leibler distance is used. More specifically,
Table 5 for these methods. consider the four quadrants of the cooccurrence matrix as
illustrated in Fig. 1, where the first quadrant denotes the

Cooccurrence  thresholding  methods. = Chanda and background-to-backgrountbb) transitions, and the third

Majumder® have suggested the use of cooccurrences for .
threshold selection, and (% has proposed several mea- guadrant to the foreground-to-foregroufid) transitions.

sures to this effect. In this vein, BA(Spatial Pa), realiz- S_lmllarly, the second and fourth quadrants denote, respec-
ing that two images with identical histograms can yet have tively, the background-to-foreground(bf) and the
different n'th order entropies due to their spatial structure, foreground-to-backgroun@b) transitions. Using the cooc-
considered the cooccurrence probability of the gray valuescurrence probabilitiepij, (that is, the score of to j gray
o1 and g, over its horizontal and vertical neighbors_ Thus level transitions normalized by the total number of transi-
the pixels, first binarized with threshold valu® are  tions) the quadrant probabilities are obtained as:

grouped into background and foreground regions. The

cooccurrence of gray levelsandm is calculated as

Ckm= E 6, where 6=1 if
' all pixels 0 T G
{01, =KIO0 G, j+1)=m]O[I (L) =K] bb bf

OLH(i+1,j)=m]},

and 6=0 otherwise. Pal proposes two methods to use the
cooccurrence probabilities. In the first expression, the bina- b #f
rized image is forced to have as many background-to-
foreground and foreground-to-background transitions as

possible. In the second approach, the converse is true, in G
that the probability of the neighboring pixels staying in the
same class is rewarded. Fig. 1 Co-occurrence matrix.
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T TS =Prob{blocke B,}. Here pP'°* represents the probability
Pbb(T):i:O 24 Pij be(T):i:0 _:;H Pij » of the block containing (O<k=sXs) whites irrespective
! ' of the binary pixel configurations. An optimum gray level
c T G G threshold is found by maximizing the entropy function of
_ B _ - the block probabilities. The choice of the block size is a
P(T) i=§T:+1 ,Zo Pij» Pre(T) i=§T:+l ,-;T:H Pij compromise between image detail and computational com-

plexity. As the block size becomes large, the number of
and similarly for the thresholded image, one finds the quan-configurations increases rapidly; on the other hand, small
tities blocks may not be sufficient to describe the geometric con-
tent of the image. The best block size is determined by
T r 6 searching over 2, 4x4, 8x8, and 16< 16 block sizes.
Quu(M=2, X dj, QM= 2> dj, , ,
i=0j=0 i=0j=T+1 Thresholding based on random sets. The underlying
idea in the method is that each grayscale image gives rise to
e 7 G G the distribution of a random set. Friel and Mulchat8v
be(T)=i72+1 ,Zo gij, Qs(T)= > > aij » consider that each choice of threshold value gives rise to a

I=THLj=TH set of binary objects with differing distance property, de-
_ . noted byF+ (the foreground according to the threshadid
Topi=argmiri Py(T)10g Quy(T) + Py(T)10g Qpe(T) The distance function can be taken as Chamfer distdHce.
+P(T)log Qs¢(T) + Psp(T)log Qsp(T) ] Thus, the expected distance function at a pixel locatipn

_ _ . d(i,j) is obtained by averaging the distance maps
Higher-order  entropy  thesholding. Abutalely d(i,j;Fy) for all values of the threshold values from 0 to
(Spatial Abutalel considers the joint entropy of two re- G or alternately by weighting them with the corresponding
lated random variables, namely, the image gray vglaéa  histogram value. Then for each valuefthel.. norm of
pixel, and the average gray valgeof a neighborhood cen- ¢ signed difference function between the average distance
tered at that pixel. Using the 2-D histograutg,g), forany  map and the individual distance maps corresponding to the
threshold pair T,T), one can calculate the cumulative dis- threshold values is calculated. Finally, the threshold is de-

tribution P(T,T), and then define the foreground entropy [IN€d as that gray value that generates a foreground map
as most similar in their distance maps to the distance-averaged

foreground.

T —_
H=-Y 3 P09, PO.9 Top=min{ma,,[d(i.))—d(i.j:Fp)l},
SEprT P

?

whered(i,j;Et), Chamfer distance to the foreground ob-

Similarly, one can define the background region’s SeCO”djectFT, andd(i,j) is the average distance.

order entropy. Under the assumption that the off-diagonal
terms, that is the two quadrant§(0,T),(T,G)] and  2-D  fuzzy partitioning. Cheng and  Chéft
[(T,G),(O,T_)] are negligible and contain elements only (SpatiaI_C_heng, combine thg ideas of fuzzy ent_ropy and
the 2-D histogram of the pixel values and their local 3
X 3 averages. Given a 2-D histogram, it is partitioned into
fuzzy dark and bright regions according to the S function
given also in Kaufmanf® The pixelsx; are assigned té
(i.e., background or foregrouhdccording to the fuzzy rule
ma(X;i), which in turn is characterized by the three param-
eters(a,b,g. To determine the best fuzzy rule, the Zadeh's
fuzzy entropy formula is used,

due to image edges and noise, the optimal p'ﬁiﬂ can
be found as the minimizing value of the 2-D entropy func-
tional. In Wu, Songde, and Hanqin$,a fast recursive

method is suggested to search for tﬁ'eﬂ pair. Cheng
and Chef® have presented a variation of this theme by
using fuzzy partitioning of the 2-D histogram of the pixels
and their local average. Li, Gong, and Chehave inves-
tigated the Fisher linear projection of the 2-D histogram.
Brink!° has modified Abutaleb’s expression by redefining
class entropies and finding the threshold as the value thay A)=— X X V)10 p(x
maximizes the minimunfmaximin) of the foreground and fuzzy(A) xzy #aLY)P(XY)IOgP(X.Y),
background entropies: more explicitly, Ty, Top) _ _ .
= maxminH«(T.T)H(T DT wherex andy are, respectively, pixel values and pixel av-
Be)ghda[di,f(N;gratté, ;)131} LesedMb(Spatial Beghdadi, erage values, and where can be foreground and back-
on the other hand, exploit the spatial correlation of the pix- gr(;]und events. Tr?us' Opt'mlljlm threshold is estlabhshed by
els using entropy of block configurations as a symbol & aﬁSt'Ve searc Ilng .or\]/era Pe“"."S.S'W;’;O va uesfufs—
source. For any threshold valliethe image becomes a set ing the genetic algorithm to maximize the sum of fore-

: ; ; ; : ground and background entropies, or alternatively, as the
of juxtaposed binary blocks of size<s pixels. LettingB crossover point which has membership 0.5, implying the

2
represent the subset 06X's) blocks out of N=2% con- |argest fuzziness. BrifR>'%has considered the concept of
taining k whites andK-k blacks, their relative population  spatial entropy that indirectly reflects the cooccurrence sta-
becomes the binary source probabilities;:fk’IOCk tistics. The spatial entropy is obtained using the 2-D PMF
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Table 6 Thresholding functions for locally adaptive methods.

T(i,))=m(i,j)+ k.o(i,))

Local_Niblack™° where k=—0.2 and local window size is b=15
i,
T )=m(ij)+{1+k. %D—lﬂ
Local_Sauvola*! where k=0.5 and R=128

] 1 if myn(i,j)<I(i,j)*bias
B(ij)= .
0 otherwise
where m,,,(i,)) is the local mean over a w=15-sized
Local_White? window and bias=2.
T(i,j)=0.5{max,[I(i+m,j+n)]+min,[I(i+m,j+n)]}
where w=31, provided contrast C(/,j)= lhign(/.))
Local_Bernsen'® — low(i,))=15.
B(i,))=1if I(i,j)<T, or mneigh-’—3Jr T5> Meenter T4
where T,=20, T,=20, T,=0.85 T,=1.0, Ts=0,
Local_Palumbo?* neighborhood size is 3 3.
lim__, To(i)=To-1(0i.)) + Rp(i.))/4
where R,(/,)) is the thinned Laplacian of the image.
B(i,j)=1if {[L(i+ b, )OL(i— b HIOLL(I,j+b)OL(/,]

Local_Yanowitz®

- b)]} {[L(i+b,j+b)OL(i—b,j—b)]O[L(i+b,j
—b)OL(i—b,j+b)]}
where

1 it [my (i, )—1(L)]1=Ty

L(i)= )
() 0 otherwise

Local_Kamel* » W=17, To=40
Define the optimal threshold value (T,,) by using a
global thresholding method, such as the Kapur®
method, then locally fine tune the pixels between [ T,

Local_Oh*? — T,] considering local covariance ( To< Top<T1).
B(i.)=1if my,uw(i,)<Ts OF oyuuli,f)>Ts
Local_Yasuda* where w=3, T,=50, b=16, T,=16, T; 128, T,=35

p(g,9’), whereg andg’ are two gray values occurring ata b=15 and a bias setting df=—0.2 were found satisfac-
lag \, and where the spatial entropy is the sum of bivariate tory. Sauvola and Pietaksinen's metfiddLocal_Sauvola
Shannon entropy over all possible lags. is an improvement on the Niblack method, especially for
stained and badly illuminated documents. It adapts the con-
tribution of the standard deviation. For example, in the case

8 Locally Adaptive Thresholding of text on a dirty or stained paper, the threshold is lowered.

In this class of algorithms, a threshold is calculated at each

pixel, which depends on some local statistics like range, Local contrast methods. White and Rohréf?
variance, or surface-fitting parameters of the pixel neigh- (Local_White) compares the gray value of the pixel with
borhood. In what follows, the threshold(i, ) is indicated the average of the gray values in some neighborhood (15
as a function of the coordinatesj) at each pixel, or if this  x 15 window suggest@dabout the pixel, chosen approxi-

is not possible, the object/background decisions are indi-mately to be of character size. If the pixel is significantly
cated by the logical variableB(i,j). Nakagawa and darker than the average, it is denoted as character; other-
Rosenfeld,”® and Deravi and Pf)’ were the early users of wise, it is classified as background. A comparison of vari-
adaptive techniques for thresholding. Nibl&&kand Sau-  ous local adaptive methods, including White and Rohrer’s,
vola and Pietaksinéfi use the local variance, while the can be found in Venkateswarluh and Bo$téIn the local
local contrast is exploited by White and Rohtér,  method of Bernseit® (Local_Bernsen, the threshold is set

Bernsent;'* and Yasuda,azgubois, and HuaHd.F;ﬁ)umbo, at the midrange value, which is the mean of the minimum
Swaminathan, and Srihdri,and Kamel and Zhaadbuilt a low(i,j) and maximumlhigh(i,j) gray values in a local

center-surround scheme for determining the threshold. A oo oo suggested size=31. However, if the contrast
surface fitted to the gray-level landscape can also be used.,. . 7 Sl .
(i,)=Thign(i,J) —liow(i,j) is below a certain threshold

local threshol in Y. i Bruck
gi:n ?;% Tﬁlrl%ssé)ed_,r:&é% %rsot\rl]v:;ear?]céthgudc&sﬂéﬁand (this contrast threshold was J15hen that neighborhood is

said to consist only of one class, print or background, de-
Local variance methods. The method from Niblack®  pending on the value oF(i,j).
(Local_Niblack) adapts the threshold according to the local  In  Yasuda, Dubois, and Huang's methtd
meanm(i,j) and standard deviatiom(i,j) and calculated (Local_Yasuda, one first expands the dynamic range of the
a window size obx b. In Trier and Jairf,a window size of  image, followed by a nonlinear smoothing, which preserves
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the sharp edges. The smoothing consists of replacing eachesolution analysi¢?> foreground and background
pixel by the average of its eight neighbors, provided the clustering;”® and joint use of horizontal and vertical
local pixel range(defined as the span between the local derivatives:

maximum and minimum valugsss below a threshgld’l. Kriging method. Oh’s method(Local_Oh) is a two-pass
An adaptive threshold is applied, whereby any pixel value gigorithm. In the first pass, using an established nonlocal
is attributed to the backgrourde., set to 25bif the local thresholding method, such as Kapur, Sahoo, and \#®ng,
range is below a thresholf, or the pixel value is above the majority of the pixel population is assigned to one of
the local average, both computed owsixw windows. the two classegobject and backgroundUsing a variation
Otherwise, the dynamic range is expanded accordingly. Fi-of Kapur’s technique, a lower thresholg is established,
nally, the image is binarized by declaring a pixel to be an below which gray values are surely assigned to class 1, e.g.,
object pixel if its minimum over a 33 window is below ~ an object. A second higher threshdld is found, such that
T, or its local variance is abovE, . any pixel with gray valuegy>T, is assigned to class 2, i.e.,
the background. The remaining undetermined pixels with
Center-surround schemes. Palumbo, Swaminathan, 9ray valuesT,<g<T, are left to the second pass. In the
and Srihari's algorithift (Local_Palumbg, based on an second pass, called the indicator kriging stage, these pixels
improvement of a method in Giuliano, Paitra, and are assigned to class 1 or class 2 using local covariance of
Stringer™® consists in measuring the local contrast of five the class indicators and the constrained linear regression
3x3 neighborhoods organized in a center-surround t€chnique called kriging, within a region with=3 pixels

scheme. The central33 neighborhood . 0f the pixel ~ radius(28 pixels.

is supposed to capture the foregroubdckground, while Among other Iocql thresholding method_s specifically
the four 3x3 neighborhoods, called in ensemiBigygp,, in geared to document images, one can mention the work of

.. 5 i
diagonal positions t&\ e, Capture the background. The Kamada and Fujimot;> who develop a two-stage method,

: : . e the first being a global threshold, followed by a local re-
algorithm consists of a two-tier analysis: lifi,j)<T,, finement. Eikvil, Taxt, and Moé®® consider a fast adaptive
then B(i,j)=1. Otherwise, one computes the average ; ' '

. . method for binarization of documents, while Pavifdis
Mheign Of tOSE PiXels iMneigp thatt exceed the threshalg, uses the second-derivative of the gray level image. Zhao
and compares it with the averag®cnierOf the Acenter PiX-

5. Th tor th e _ Pihe in. 2Nd Ond?® have considered validity-guided fuzzy
els. The test for the remaining pixels consists of the in- c-clustering to provide thresholding robust against illumi-
equality, such that, if Myeignl3+ Ts>Mcened 4, then

o ) Do nation and shadow effects.
B(i,j)=1. In Palumbo, Swaminathan, and Sritfrithe
following threshold values have been suggesteg:= 20,

9 Thresholding Performance Criteria
T,=20,T3=0.85T,=1.0, andT5=0.

The idea in Kamel and Zhad'$Local_Kame) method Automated image.threshold.ing encounters difficulties when
is to compare the average gray value iEbIocks proportionalthe foreground object constitutes a dlspropo_rtlonately small
! . . (large area of the scene, or when the object and back-
to the object widti(e.g., stroke width of character® that  grqnd gray levels possess substantially overlapping distri-
of their surrounding areas. Ib is the estimated stroke pytions, even resulting in an unimodal distribution. Further-
width, averages are calculated ovew& w window, where  more, the histogram can be noisy if its estimate is based on
w=2b+1. Their approach, using the comparison operator only a small sample size, or it may have a comb-like struc-
L(i,j) is somewhat similar to smoothed directional deriva- ture due to histogram stretching/equalization efforts. Con-
tives. The following parameter settings have been foundfﬁqu%ntlyt, mlsclaSSIfledlpIX;ls ta?k? Shapﬁ dtefti_rma:lonksof
o _ ; ; e object may adversely affect the quality-testing task in
325@??;;?]“5’ er:; T;nd4(\)(a|(~|T(;1;;\s/etri]r?]pfg\r/zzagiort]he NDT applications. On the other hand, thresholded docu-

. . . ment images may end up with noise pixels both in the
method of Kamel and Zhao by considering various specialy, i qround and foreground, spoiling the original character

conditions'*? bitmaps. Thresholding may also cause character deforma-
. . . tions such as chipping away of character strokes or con-
Surface-:_‘/tz,‘/nl% thresholding. In ~ Yanowitz ~— and  \grsely adding bumps and merging of characters among
Bruckstein's™ (Local_Yanowitz) method, edge, and gray themselves andjor with background objects. Spurious pix-
level information is combined to construct a threshold sur- g|s a5 well as shape deformations are known to critically
face. First, the image gradient magnitude is thinned to yield affect the character recognition rate. Therefore, the criteria
|Oca| grad|ent maxima. The threshold Surface IS ConStI’UCtedto assess thresho|ding a|g0rithms must take into Consider_
by interpolation with potential surface functions using a ation both the noisiness of the segmentation map as well as
successive overrelaxation method. The threshold is ob-the shape deformation of the characters, especially in the
tained iteratively using the discrete Laplacian of the sur- document processing applications.
face. A recent version of surface fitting by variational meth-  To put into evidence the differing performance features
ods is provided by Chan, Lam, and ZHY.Shen and Ip® of thresholding methods, we have used the following five
used a Hopfield neural network for an active surface para-performance criteria: misclassification err@vlE), edge
digm. There have been several other studies for localmismatch(EMM), relative foreground area err¢RAE),
thresholding, specifically for badly illuminated images, as modified Hausdorff distancdiHD), and region nonunifor-
in Parkert?! Other local methods involve Hadamard multi- mity (NU). Obviously, these five criteria are not all inde-
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pendent: for example, there is a certain amount of correla-close to 0, while the worst case of Nt corresponds to

tion between misclassification error and relative foreground an image for which background and foreground are indis-
area error, and similarly, between edge mismatch and Haustinguishable up to second order moments.

dorff distance, both of which penalize shape deformation.

The region nonuniformity criterion is not based on ground- Relative foreground area error. The comparison of ob-
truth data, but judges the intrinsic quality of the segmentedject properties such as area and shape, as obtained from the
areas. We have adjusted these performance measures segmented image with respect to the reference image, has
that their scores vary from 0 for a totally correct segmen- been used in Zhafi§under the name of relative ultimate
tation to 1 for a totally erroneous case. measurement accura¢RUMA) to reflect the feature mea-

] o ) o 120 surement accuracy. We modified this measure for the area
Misclassification error. Misclassification erro(ME), featureA as follows:

reflects the percentage of background pixels wrongly as-
signed to foreground, and conversely, foreground pixels Ag—Ar

wrongly assigned to background. For the two-class seg- A if Ar<Ag
mentation problem, ME can be simply expressed as: RAE= 0 )
Ar—Ay . '
BoNBt|+|FoNF — if Ar=A
e—y [BoNBil+[FonFy A

BoltIFal ©
whereA, is the area of reference image, atvgis the area

whereBg andF o denote the background and foreground of of thresholded image. Obviously, for a perfect match of the

the original (ground-truth image, Br and Fy denote the  segmented regions, RAE is zero, while if there is zero over-

background and foreground area pixels in the test imagejap of the object areas, the penalty is the maximum one.
and|.| is the cardinality of the set. The ME varies from O for

a perfectly classified image to 1 for a totally wrongly bina- Shape distortion penalty via Hausdorff distance. The

rized image. Hausdorff distance can be used to assess the shape similar-
ity of the thresholded regions to the ground-truth shapes.

Edge mismatch. This metric penalizes discrepancies be- Recall that, given two finite sets of points, say ground-truth

tween the edge map of the gray level image and the edgeand thresholded foreground regions, their Hausdorff dis-
map obtained from the thresholded image. The edge mis+tance is defined as
match metric is expressed &s:

H(Fo,Fr)=maxdy(Fo,F1),dy(Fr.Fo)},

CE
EMM=1- ,  Wwith
CE+ o[ Zycieq 8(K) + aZyceno(K) ] where dy(Fo,F1)= max d(fg,Fy)
foeFo
d if |d|<maxdist .
o(k) = 2 14 : , (6) = max min|/fo—"f4,
D max otherwise foeFofreFr

where CE is the number of common edge pixels found and||f,— f+| denotes the Euclidean distance of two pixels
between the ground-truth image and the thresholded imagejn the ground-truth and thresholded objects.

EQ is the set of excess ground-truth edge pixels missing in  Since the maximum distance is sensitive to outliers, we
the threshold image, ET is the set of excess thresholdechave measured the shape distortion via the average of the

edge pixels not taking place in the ground truéhjs the  modified Hausdorff distance@MHD)**? over all objects.
penalty associated with an excess original edge pixel, andThe modified distance is defined as:
finally « is the ratio of the penalties associated with an

excess threshold edge pixel to an excess original edge 1
pixel. Hered, denotes the Euclidean distance of tkith MHD(Fq,F1)= m 2 d(fo,F1). (9
excess edge pixel to a complementary edge pixel within a Ol focFo

search area determined by the maxdist parameter. It has

been suggestédto select the parameter as maxdist FOr example, the MHDs are calculated for each 19
—0.02%, whereN is the image dimensiorD ;;=0.1IN, X 19 pixel character box, and then the MHDs are averaged

w=10N. anda=2. over all characters in a document. Notice that, since an
' upper bound for the Hausdorff distance cannot be estab-
Region nonuniformity. This measuré®®*3*which does lished, the MHD metric could not be normalized to the

not require ground-truth information, is defined as interval [0, 1], and hence is treated separatédy dividing
each MHD value to the highest MHD value over the test
IFy  o? image set NMHD.
NU= —— —, (7)
|Fr+B+| o Combination of measures. To obtain an average perfor-

5 . . mance score from the previous five criteria, we have con-
where o represents the variance of the whole image, andsjdered two methods. The first method was the arithmetic
o? represents the foreground variance. It is expected that aaveraging of the normalized scores obtained from the ME,
well-segmented image will have a nonuniformity measure EMM, NU, NMHD, and RAE criteria. In other words,
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a) Eddy current image of a rivet region. )™ Thermy) f GFRP c) Ulrasonic image of a GFRP d) Light microscope image of a
composite material. material. material strucure.

v

¥

h) Defective material image.

f) Defective cloth image. g) Defective PCB image.

j) Ground-truth of thermal image. k) Ground-truth of ultrasonic image.

¢) Defective tile image

D Ground-trath  of light
microscope image of material

strucure.

i) Ground-truth of eddy current image.

il

v D a

%‘W 4,

m) Ground-truth of defective tile image n) Ground-truth of defective cloth 0) Ground-truth of defective PCB p) Ground-truth of defective
image image. material image.

Fig. 2 Sample NDT images and their ground truths.

given a thresholding algorithm, for each image the averagel0 Dataset and Experimental Results

of ME, EMM, NU, and RAE was an indication of its seg-

mentation quality. In turn, the sum of these image quality 10.1 Dataset

scores determines the performance of the algorithm. In thepyr test data consisted of a variety of 40 NDT and 40
second method, we used rank averaging, so that, for eacljocument images.

test image, we ranked the thresholding algorithms from 1 to

40 according to each criterion separately. Then the ranksNondestructive testing images. The variety of NDT we
(not the actual scorgsvere averaged over both the images considered consisted of eight eddy current, for thermal, two
and the five criteria ME, EMM, NU, RAE, and NMHD. A ultrasonic, six light microscope, four ceramic, six material,
variation of this scheme could be to first take the arithmetic two PCB, and eight cloth images. A few samples of the
average over the criteria for each image, then rank theNDT image set are given in Fig. 2.

thresholding methods, and finally average the ranks. We  Eddy current image inspection is frequently used for the
experimented with the previous two score averaging meth-getection of invisible small cracks and defects of different
ggz ﬁgtro?ﬁgcthzr:dthrei/nl:egxﬁé?jgilggaic;{yqsﬁrﬂilgr Taii?g’gesf materials including aircraft fuselages. A defective eddy cur-
the thresholding algorithms. Consequently, we chose therent image and its ground-truth segmentation map are illus-

arithmetic averaging method, as it was more straightfor- trate_d n Flg_s. &) and Z')_’ where the dark region, repre-
ward. Thus the performance measure for ittte image is senting the rivet surroundings, must be circular in a healthy

written in terms of the scores of the five metrics as: case. Infrared thermographs are used, among other applica-
tions, for surface defect detection in aircraft materials, such

as carbon fiber reinforced composites. A defective thermal

L . . . . image specimen and its segmentation ground truth are il-

S(1) =[ME(I)+EMM(i) +NU(i) + RAE(I) lustrated in Figs. @) and Zj). An ultrasonic image of a
+NMHD(i)]/5. (10 defective glass-fiber reinforced plastigSFRP image and
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Fig. 4 Thresholding results of sample NDT images.
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Fig. 5 Thresholding results of sample document images.

its ground truth are given in Figs(@ and 2Zk). In material and ground truth are given in Figs(@ and Zc). Finally a
science applications, the microstructure of materials is fre-defective fuselage material image and its ground truth are
quently inspected by light microscopy. These observationsgiven in Figs. 2h) and Zp).

yield information on the phases of the material, as well as

on porosity, particle sizes, uniformity of distribution, etc. A Document image applications. 40 documents contain-
sample image of light microscopy and its ground-truth seg- INg ground-truth character images were created with differ-
mentation map images are displayed in Figs) 2and 21). ent fonts (times new roman, arial, comics, etcsizes

Tile and cloth quality testing application images and their (10,12,14, and_ typefacesénorma_l, bOId' italic, etg. Fur-
. L thermore, to simulate more realistic documents such as the
ground truths are given in Figs(e2, 2(m), 2(f), and 2Zn),

respectively. Visual inspection of PCB boards, as practicedsg(zﬁtri eoritfc,he gtgor ?jlg;“rgdgfdpa:j%irﬂgg%ﬁcov%erg aggtfat).(;gg

today on the production line, is a tedious and error-prone g 434 degradation models. The simulated document de-
task. Computer-vision-based automatic inspection schemesacts were blur and speckle noise since, among the several
are increasingly being deployetf,where the first process- other defects proposed in Baift these two had a direct
ing stage is again thresholding. The thresholding and subbearing on thresholding. Three levels of document degra-
sequent processing aims to put into evidence such defectglation, namely light, medium, and poor, were used. Sample
as broken lines, undrilled vias, etc. An example PCB image degraded document imag&ssmall part of real imaggsare
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Table 7 Thresholding evaluation ranking of 40 NDT images according to the overall average quality
score.

Average Average
Rank Method score (AVE) Rank Method score (S)
1 Cluster_Kittler 0.256 21 Shape_Ramesh 0.460
2 Entropy_Kapur 0.261 22 Spatial_Cheng 0.481
3 Entropy_Sahoo 0.269 23 Attribute_Tsai 0.484
4 Entropy_Yen 0.289 24 Local_Bernsen 0.550
5 Cluster_Lloyd 0.292 25 Spatial_Pal_a 0.554
6 Cluster_Otsu 0.318 26 Local_Yasuda 0.573
7 Cluster_Yanni 0.328 27 Local_Palumbo 0.587
8 Local_Yanowitz 0.339 28 Entropy_Sun 0.588
9 Attribute _Hertz 0.351 29 Attribute_Leung 0.590
10 Entropy_Li 0.364 30 Entropy_Pun_a 0.591
11 Spatial _Abutaleb 0.370 31 Spatial_Beghdadi 0.619
12 Attribute _Pikaz 0.383 32 Local_Oh 0.619
13 Shape_Guo 0.391 33 Local_Niblack 0.638
14 Cluster_Ridler 0.401 34 Spatial _Pal_b 0.642
15 Cluster_Jawahar_b 0.423 35 Entropy_Pun_b 0.665
16 Attribute_Huang 0.427 36 Local_White 0.665
17 Shape_Sezan 0.431 37 Local_Kamel 0.697
18 Entropy_Shanbag 0.433 38 Local_Sauvola 0.707
19 Shape_Rosenfeld 0.442 39 Cluster_Jawahar_a 0.735
20 Shape_Olivio 0.458 40 Entropy_Brink 0.753

Table 8 Thresholding evaluation ranking of 40 degraded document images according to the overall
average quality score.

Average Average
Rank Method score (AV) Rank Method score (S)

1 Cluster_Kittler 0.046 21 Cluster_Yanni 0.300
2 Local_Sauvola 0.066 22 Attribute_Tsai 0.308
3 Local_White 0.08 23 Attribute _Hertz 0.317
4 Local_Bernsen 0.09 24 Spatial_Cheng 0.320
5 Shape_Ramesh 0.093 25 Local_Yasuda 0.336
6 Attribute _Leung 0.110 26 Entropy_Sun 0.39

7 Entropy_Li 0.114 27 Local_Kamel 0.391
8 Cluster_Ridler 0.136 28 Entropy_Pun_a 0.463
9 Entropy_Shanbag 0.144 29 Local_Niblack 0.475
10 Shape_Sezan 0.145 30 Local_Oh 0.514
11 Entropy_Shaoo 0.148 31 Spatial_Abutaleb 0.515
12 Entropy_Kapur 0.149 32 Spatial_Pal_a 0.533
13 Entropy_Yen 0.156 33 Spatial_Beghdadi 0.539
14 Entropy_Brink 0.17 34 Attribute_Huang 0.566
15 Cluster_Lloyd 0.18 35 Entropy_Pun_b 0.593
16 Local_Palumbo 0.195 36 Shape_Guo 0.596
17 Cluster_Otsu 0.197 37 Spatial_Pal_b 0.605
18 Cluster_Jawahar_b 0.251 38 Shape_Rosenfeld 0.663
19 Attribute _Pikaz 0.259 39 Shape_Olivio 0.711
20 Local_Yanowitz 0.288 40 Cluster_Jawahar_a 0.743
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Fig. 6 Sample performance score distributions of best and worst thresholding methods over the NDT

images.

shown in Fig. 3. The blur was modeled by a circularly 10.2 Experimental Results

symmetric Gaussian filter, representing the point spreadrepresentative visual results and their quantitative scores
function, with standard error of blur in units of output pixel zre given in Fig. 4 for NDT images and in Fig. 5 for docu-
size. The blur size was chosen, in pixel units, &5 ment images. The overall evaluation result of NDT images

164/ Journal of Electronic Imaging / January 2004 / Vol. 13(1)



Survey over image thresholding techniques . . .

CLUSTER_KITTLER LOCAL_SAUVOLA
1.0000 - 1.0000 -
0.9000 0.9000
08000 08000 {
07000 0.7000 |
06000 06000 4
0.5000 05000
0.4000 0.4000 {
0.3000 0.3000 4
02000 0.2000
0.1000 0.1000 4
o.0000 .”,”.”,”,ﬂ,”,”,ﬂ,” ﬂ,”,”‘ﬂ,n‘ Ilag, ‘“,ﬂ,”‘n‘ﬂ I_-, ,ﬂ‘ﬂ | 1P D oo -1, ”H”””ﬂ ”.H‘H‘Hﬂ.”.”.n. Aol “ﬂ“”nﬂ — ﬂ””ﬂ” .....
A B RS s nEE Sy SENIRE LD B S N R
a) HAVE=0-O46 5 Oave=0.032 b) HAVE=0-0662 & oave=0.044
LOCAL_WHITE LOCAL_BERNSEN
1.0000 4 1.0000 4
0.9000 4 0.9000 4
08000 0.8000
0.7000 0.7000 4
06000 4 06000
05000 4 05000
0.4000 4 0.4000
03000 4 03000 {
02000 4 0.2000 {
11| YT [ 1
e 111 11 Y PYTTOPPYTT]|IY SSes  11 EYTY e oy 1 1 11
Tmw N~ o Dw 2 RRKR S B8 B BT I T B B B R
C) uAVE=O~080 , 6ave=0.052 d) HAVE=0.090 3 Oave=0.062
SPATIAL_PAL_B SHAPE_ROSENFELD
1.0000 1.0000
0.9000 | 0.9000
08000 0.8000
0.7000 0.7000
06000 0.6000
05000 0.5000
0.4000 0.4000
03000 0.3000
02000 0.2000
0.1000 | 0.1000
0.0000 A . 0.0000 .
~m o~ T oL~ 53R N2S 29533 T~ o222 3R 8K BBE AT
C) l.lAVE=O.606, GAVE=O»031 f) IJ-AVE=0-664, 0AVE=O-020
SHAPE_OLIVIO CLUSTER_JAWAHAR_A
1,0000 1.0000
0.9000 0.9000
0.8000 |[] f] - e e all S il I il 08000 {1\ M n g _ o . alm il cin-ln &
0.7000 0.7000
0.6000 0.6000
0.5000 0.5000
04000 0.4000
0.3000 0.3000
0:2000 0.2000
0.1000 01000
0.0000 '
TTeTYEeRre SRR ARRE B AN ES e e e e e raRNAE 885 8T

8) Mave=0.711, Gave=0.245 h) Uave=0.744, Gave=0.215

Fig. 7 Sample performance score distributions of best and worst thresholding methods over the
document images.

is given in Table 7, while the performance scores for docu- sures over 40 images. It is interesting to point out the fol-
ment images are shown in Table 8. In these tables, the finalowing.

score of each thresholding method is calculated by taking

the average of the ME, EMM, NU, NMHD, and RAE mea- * As it was conjectured, the rankings of the thresholding
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algorithms differ under NDT and document applica- measures outlined in Sec. 9. To obtain better thresholding
tions. In fact, only the ClustekKittler algorithm was  results, one should consider application-specific informa-
common to both tables, if we only consider the top tion, for example, an expected foreground region, whether
seven. it is on a dark or bright side, for guidance.

- For NDT applications, the highest-ranking seven tech- One should keep on eye on the fact that thresholding
niques are all from the clustering and entropy cat- Should be opted for two-class segmentation problems due

egory. These scores reflect also our subjective evalual®
tion on the plausibility of the extracted object.

» For document applications, techniques from locally
adaptive and shape categories appear in the top seven
These results are consistent with those of the Trier and
Jair? study.

their simplicity whenever they achieve performance

similar to more sophisticated methods, like Bayesian
schemes and random Markov models.

Acknowledgment
We would like to thank the Tlitak Marmara Research

Center for supporting the study.

The performance variability of the algorithms from case to

case are illustrated in Figs. 6 and 7. Here the horizontal axisReferences

denotes the index of the 40 images, and the vertical axis
denotes the corresponding average score. Notice that all
methods invariably performed poorly for at least one or two
images'® Thus it was observed that any single algorithm 2:
could not be successful for all image types, even in a single
application domain. To obtain the robustness of the thresh- 3.
olding method, we explored the combination of more than
one thresholding algorithm based on the conjecture that 4.
they could be complementary to each other. The combina-
tion of thresholding algorithms can be done at the feature ™
level or at the decision level. At the feature level, one could
apply, for example, some averaging operation on the Topt ©-
values obtained from individual algorithms; on the decision
level, one could do fusion of the foreground-background 7.
decisions, for example, by taking the majority decision. We 4
could not obtain better results than the Kittler method. '

1.

11 Conclusions

In this study, we make a categorized survey of image
thresholding methods. Furthermore, we select a subset ofio.
40 bilevel image thresholding methods, which have been
implemented and for which the thresholding formulas have 1,
been expressed in a streamlined fashion. Quantitative
evaluation scores have been obtained using a database of
40 NDT and 40 document images. We have observed that».
the clustering-based method of Kittler and lllingwdrth
and the entropy-based methods of Kapur, Sahoo, an
Wong?® and Sahoo, Wilkins, and Yeag®€rare, in that or-
der, the best performing thresholding algorithms in the casel4
of NDT images. Similarly, the clustering-based method of
Kittler and lllingwortt*® and the local-based methods of 1s.
Sauvola and Pietaksinéh and of White and Rohrét?
are, in that order, the best performing document binariza- ¢
tion algorithms. Note, however, that these results apply
only to text document images degraded with noise and blur.
On the other hand, documents with patterned backgrounds
like checks, documents degraded by nonuniform illumina- 18.
tion and shadow, or mixed-type documénts®*%re out-
side the scope of this comparison. 19.
Several other issues remain to be addressed. For ex-
ample, the increasing number of color documents becomesg
a new challenge for binarization and segmentatiSi#°
Multilevel thresholding, or simply multithresholding, is
gaining more relevance in vision apg)lications. A few au-
thors have addressed this isSué37:°46773138.14he mych
needed performance comparison of multithresholding algo-
rithms would necessitate reformulation of the performance 23.

21.

22.

166/ Journal of Electronic Imaging / January 2004 / Vol. 13(1)

M. Kamel and A. Zhao, “Extraction of binary character/graphics im-
ages from grayscale document imageGfaph. Models Image Pro-
cess.55(3), 203—217(1993.

T. Abak, U. Barjsand B. Sankur, “The performance of thresholding
algorithms for optical character recognitionlfitl. Conf. Document
Anal. Recog. ICDAR'97pp. 697—7001997.

O. D. Trier and A. K. Jain, “Goal-directed evaluation of binarization
methods,”|EEE Trans. Pattern Anal. Mach. IntelPAMI-17, 1191—
1201(1995.

B. Bhanu, “Automatic target recognition: state of the art survey,”
IEEE Trans. Aerosp. Electron. Sy$tES-22, 364—-379(1986.

M. Sezgin and R. Tasaltin, “A new dichotomization technique to mul-
tilevel thresholding devoted to inspection applicatiorBdttern Rec-
ogn. Lett.21, 151-161(2000.

M. Sezgin and B. Sankur, “Comparison of thresholding methods for
non-destructive testing applicationsEEE ICIP’2001, Intl. Conf. Im-
age Process.pp. 764-7672001.

J. C. Russ, “Automatic discrimination of features in gray-scale im-
ages,”J. Microsc.148(3), 263-277(1987).

M. E. Sieracki, S. E. Reichenbach, and K. L. Webb, “Evaluation of
automated threshold selection methods for accurately sizing micro-
scopic fluorescent cells by image analysi&gpl. Environ. Microbiol.

55, 2762—-27721989.

. P. Bock, R. Klinnert, R. Kober, R. M. Rovner, and H. Schmidt,

“Gray-scale ALIAS,” IEEE Trans. Knowl. Data Eng4, 109-122
(1992.

L. U. Wu, M. A. Songde, and L. U. Hanging, “An effective entropic
thresholding for ultrasonic imaging,ICPR’98: Intl. Conf. Patt.
Recog. pp. 1522-15241998.

J. Moysan, G. Corneloup, and T. Sollier, “Adapting an ultrasonic
image threshold method to eddy current images and defining a vali-
?atiog domain of the thresholding methodDT & E Intl. 32, 79-84
1999.

J. S. Chang, H. Y. M. Liao, M. K. Hor, J. W. Hsieh, and M. Y. Chern,
“New automatic multi-level thresholding technique for segmentation
of thermal images,image Vis. Computl5, 23-34(1997.

d13. W. Oh and B. Lindquist, “Image thresholding by indicator kriging,”

IEEE Trans. Pattern Anal. Mach. IntelPAMI-21, 590—602(1999.

T. Srikanthan and K. V. Asari, “Automatic segmentation algorithm for
the extraction of lumen region and boundary from endoscopic im-
ages,”Med. Biol. Eng. Compu89(1), 8—14(2002.

S. Venkatesh and P. L. Rosin, “Dynamic threshold determination by
local and global edge evaluationCVGIP: Graph. Models Image
Process57, 146-160(1995.

R. Kohler, “A segmentation system based on thresholdi&&ph.
Models Image Proces45, 319-338(1981).

17. A. Perez and T. Pavlidis, “An iterative thresholding algorithm for

image segmentation,”[EEE Trans. Pattern Anal. Mach. Intell.
PAMI-9, 742—75(1987).

J. Fan, J. Yu, G. Fujita, T. Onoye, L. Wu, and I. Shirakawa, “Spa-
tiotemporal segmentation for compact video representatiSighal
Process. Image Commuih6, 553—566(2001).

S. U. Le, S. Y. Chung, and R. H. Park, “A comparative performance
study of several global thresholding techniques for segmentation,”
Graph. Models Image Process2, 171-190(1990.

. J. S. Weszka and A. Rosenfeld, “Threshold evaluation techniques,”

IEEE Trans. Syst. Man Cyber8MC-8, 627—-629(1978.

P. W. Palumbo, P. Swaminathan, and S. N. Srihari, “Docurineage
binarization: Evaluation of algorithms,Proc. SPIE697, 278—-286
(1986.

P. K. Sahoo, S. Soltani, A. K. C. Wong, and Y. Chen, “A survey of
thresholding techniques,Comput. Graph. Image Proces$l, 233—
260 (1988.

C. A. Glasbey, “An analysis of histogram-based thresholding algo-



24.

25.
26.
27.
28.

29.
30.

31.
32.

33.
34.
35.

36.

37.

38.

39.

40.
41.

42.

43.
44,

45.
46.
47.

48.
49.

50.

51.
52.
53.

54.

55.
56.

57

Survey over image thresholding techniques . . .

rithms,” Graph. Models Image Process5, 532—-537(1993.

A. Rosenfeld and P. De la Torre, “Histogram concavity analysis as an
aid in threshold selection,IEEE Trans. Syst. Man CyberBMC-13,
231-235(1983.

selection,”IEEE Trans. Syst. Man CyberSMC-9, 38—52(1979.

sicurvature,”Comp. Artif. Intell.6, 523-533(1987).

S. C. Sahasrabudhe and K. S. D. Gupta, “A valley-seeking threshold
selection technique,Comput. Vis. Image Undersi6, 55—65(1992.

R. Guo and S. M. Pandit, “Automatic threshold selection based on
histogram modes and a discriminant criteriobfach. Vision Appl.

10, 331-338(1998.

J. Caiand Z. Q. Liu, “A new thresholding algorithm based on all-pole

model,” ICPR’98, Intl. Conf. Patt. Recogpp. 34—36(1998.

togram approximation,”IEE Proc. Vision Image Signal Process.
142(5), 271-279(1995.

T. Kampke and R. Kober, “Nonparametric optimal binarization,”
ICPR’98, Intl. Conf. Patt. Recogpp. 27—291998.

M. |. Sezan, “A peak detection algorithm and its application to
histogram-based image data reductiofaph. Models Image Pro-
cess.29, 47-59(1985.

M. J. Carlotto, “Histogram analysis using a scale-space approach,”
IEEE Trans. Pattern Anal. Mach. IntelPAMI-9, 121-129(1997).

J. C. Olivo, “Automatic threshold selection using the wavelet trans-
form,” Graph. Models Image Process6, 205—-218(1994.

R. J. Whatmough, “Automatic threshold selection from a histogram
using the exponential hull,Graph. Models Image Process3, 592—
600 (1992).

S. Boukharouba, J. M. Rebordao, and P. L. Wendel, “An amplitude

66

segmentation method based on the distribution function of an image,” 69.

Graph. Models Image Procesg9, 47-59(1985.

D. M. Tsai, “A fast thresholding selection procedure for multimodal
and unimodal histograms,’Pattern Recogn. Lettl6, 653-666
(1995.

T. W. Ridler and S. Calvard, “Picture thresholding using an iterative
selection method,TEEE Trans. Syst. Man CyberBMC-8, 630—-632
(1978.

C. K. Leung and F. K. Lam, “Performance analysis of a class of
iterative image thresholding algorithmsPattern Recogn.29(9),
1523-1530(1996.

H. J. Trussel, “Comments on picture thresholding using iterative se-
lection method,”IEEE Trans. Syst. Man Cyber8MC-9, 311(1979.

M. K. Yanni and E. Horne, “A new approach to dynamic threshold-
ing,” EUSIPCO’94: 9th European Conf. Sig. Process. 34—-44
(1994.

D. E. Lloyd, “Automatic target classification using moment invariant

of image shapes,” Technical Report, RAE IDN AW126, Farnborough, 76.

UK (Dec. 1985.

J. Kittler and J. lllingworth, “Minimum error thresholdingPattern
Recognl19, 41-47(1986.

S. Cho, R. Haralick, and S. Yi, “Improvement of Kittler and Illing-
\(NOl'th'S minimum error thresholdingPattern Recogn22, 609—-617
1989.

criteria,” IEEE Trans. Syst. Man Cyber8MC-15, 652—655(1985.

N. Otsu, “A threshold selection method from gray level histograms,”
IEEE Trans. Syst. Man CyberSMC-9, 62—66(1979.

C. V. Jawabhar, P. K. Biswas, and A. K. Ray, “Investigations on fuzzy
thresholding based on fuzzy clusteringPattern Recogn.30(10),
1605-16131997).

F. R. D. Velasco, “Thresholding using the isodata clustering algo-
rithm,” IEEE Trans. Syst. Man Cyber8MC-10, 771-774(1980.

H. Lee and R. H. Park, “Comments on an optimal threshold scheme
for image segmentation,/EEE Trans. Syst. Man Cyber&MC-20,
741-742(1990.

J. Z. Liu and W. Q. Li, “The automatic thresholding of gray-level
pictures via two-dimensional Otsu methodtta Automatica Sinl9,
101-105(1993.

T. Pun, “A new method for gray-level picture threshold using the
entropy of the histogram,Signal Process2(3), 223-237(1980.

T. Pun, “Entropic thresholding: A new approactComput. Graph.
Image Processl6, 210-239(1981).

J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, “A new method for
gray-level picture thresholding using the entropy of the histogram,”
Graph. Models Image Procesa9, 273-285(1985.

J. C. Yen, F. J. Chang, and S. Chang, “A new criterion for automatic
multilevel thresholding,”lEEE Trans. Image Procest?-4, 370—-378
(1995.

P. Sahoo, C. Wilkins, and J. Yeager, “Threshold selection using Re-
nyi's entropy,” Pattern Recogn30, 71-84(1997).

C. H. Liand C. K. Lee, “Minimum cross-entropy thresholdingat-

tern Recogn26, 617—625(1993.

. C. H. Li and P. K. S. Tam, “An iterative algorithm for minimum 91

58.
J. Weszka and A. Rosenfeld, “Histogram modification for threshold 59.

L. Halada and G. A. Osokov, “Histogram concavity analysis by qua- 60.

61.

62.

N. Ramesh, J. H. Yoo, and I. K. Sethi, “Thresholding based on his- 63.

64.

65.

67.
68.

70.
71.

72.
73.

74.
75.

77.

78.

J. Kittler and J. lllingworth, “On threshold selection using clustering 79.

80.

81.
82.
83.
84.
85.

86.
87.
88.

89.

90.

cross-entropy thresholding,Pattern Recogn. Lett19, 771-776
(1998.

A. D. Brink and N. E. Pendock, “Minimum cross entropy threshold
selection,”Pattern Recogn29, 179-188(1996.

N. R. Pal, “On minimum cross-entropy thresholdingpattern Rec-
ogn.29(4), 575-580(1996.

A. G. Shanbag, “Utilization of information measure as a means of
image thresholding, Comput. Vis. Graph. Image Process, 414—
419 (1994.

H. D. Cheng, Y. H. Chen, and Y. Sun, “A novel fuzzy entropy ap-
proach to image enhancement and thresholdigighal Process75,
277-301(1999.

G. Johannsen and J. Bille, “A threshold selection method using infor-
mation measures,ICPR’82: Proc. 6th Intl. Conf. Patt. Recagop.
140-143(1982.

S. K. Pal, R. A. King, and A. A. Hashim, “Automatic gray level
thresholding through index of fuzziness and entrogydttern Rec-
ogn. Lett.1, 141-146(1980.

J. E. Shore and R. W. Johnson, “Axiomatic derivation of the principle
of maximum entropy and the principle of minimum cross-entropy,”
IEEE Trans. Inf. TheoryT-26, 26—37(1980.

A. K. C. Wong and P. K. Sahoo, “A gray-level threshold selection
method based on maximum entropy principléEEE Trans. Syst.
Man Cybern.SMC-19, 866—871(1989.

. A. Kaufmann/ntroduction to the Theory of Fuzzy Sets: Fundamental
Theoretical Elements/ol. 1, Academic Press, New Yord.980.

L. Hertz and R. W. Schafer, “Multilevel thresholding using edge
matching,” Comput. Vis. Graph. Image Procedsgl, 279-2951988.

S. K. Pal and A. Rosenfeld, “Image enhancement and thresholding by
optimization of fuzzy compactnessPattern Recogn. LetZ, 77-86
(1988.

A. Rosenfeld, “The fuzzy geometry of image subsefgttern Rec-
ogn. Lett.2, 311-317(1984.

W. H. Tsai, “Moment-preserving thresholding: A new approach,”
Graph. Models Image Proces$9, 377-393(1985.

S. C. Cheng and W. H. Tsai, “A neural network approach of the
moment-preserving technique and its application to thresholding,”
IEEE Trans. ComputC-42, 501-507(1993.

E. J. Delp and O. R. Mitchell, “Moment-preserving quantization,”
IEEE Trans. CommurB9, 1549-15581991).

L. O'Gorman, “Binarization and multithresholding of document im-
ages using connectivityGraph. Models Image Processt, 494 -506
(1994.

Y. Liu and S. N. Srihari, “Document image binarization based on
texture analysis,’Proc. SPIE2181, 254-263(1994).

Y. Liu, R. Fenrich, and S. N. Srihari, “An object attribute thresholding
algorithm for document image binarizationlCDAR’93: Proc. 2nd
Intl. Conf. Document Anal. Recogp. 278—-281(1993.

A. Pikaz and A. Averbuch, “Digital image thresholding based on to-
pological stable state,Pattern Recogn29, 829—-843(1996.

C. A. Murthy and S. K. Pal, “Fuzzy thresholding: A mathematical
framework, bound functions and weighted moving average tech-
nique,” Pattern Recogn. Letfll, 197-206(1990.

R. Yager, “On the measure of fuzziness and negation. Part |: Mem-
bership in the unit interval,Int. J. Gen. Syst5, 221-229(1979.

K. Ramar, S. Arunigam, S. N. Sivanandam, L. Ganesan, and D.
Manimegalai, “Quantitative fuzzy measures for threshold selection,”
Pattern Recogn. Let1, 1-7(2000.

X. Fernandez, “Implicit model oriented optimal thresholding using
Kolmogorov-Smirnov similarity measure,ICPR’2000: Intl. Conf.
Patt. Recog.pp. 466—469, Barcelon@000.

C. K. Leung and F. K. Lam, “Maximum segmented image informa-
tion thresholding,"Graph. Models Image Proces80, 57—76(1998.

L. K. Huang and M. J. J. Wang, “Image thresholding by minimizing
the measures of fuzzinessYattern Recogn28, 41-51(1995.

H. S. Don, “A noise attribute thresholding method for document im-
age binarization,1EEE Conf. Image Procesgp. 231-2341995.

S. Guo, “A new threshold method based on morphology and fourth
order central moments,Proc. SPIE3545 317-320(1998.

Y. Solihin and C. G. Leedham, “Integral ratio: A new class of global
thresholding techniques for handwriting imagetfEE Trans. Pat-
tern Anal. Mach. IntellPAMI-21, 761-768(1999.

Z. Aviad and E. Lozinskii, “Semantic thresholding?attern Recogn.
Lett. 5, 321-328(1987.

G. Gallo and S. Spinello, “Thresholding and fast iso-contour extrac-
tion with fuzzy arithmetic,”Pattern Recogn. LetR21, 31-44(2000.

R. L. Kirby and A. Rosenfeld, “A note on the use(gfay level, local
average gray levelspace as an aid in threshold selectiofEEE
Trans. Syst. Man Cyberi&MC-9, 860—864(1979.

G. Fekete, J. O. Eklundh, and A. Rosenfeld, “Relaxation: evaluation
and applications,”IEEE Trans. Pattern Anal. Mach. IntelPAMI-

3(4), 459-469(1981).

A. Rosenfeld and R. Smith, “Thresholding using relaxatiolf; EE
Trans. Pattern Anal. Mach. IntelPAMI-3, 598—-606(1981).

. A.Y. Wy, T. H. Hong, and A. Rosenfeld, “Threshold selection using

Journal of Electronic Imaging / January 2004/ Vol. 13(1) /167



92.

93.

94.
95.

96.

97.

98.
99.

100.
101.

102.
103.
104.

105.

106.
107.
108.
109.
110.
111.
112.

113.
114.
115.
116.

117.

118.
119.
120.

121.
122.

123.

124.

Sezgin and

quadtrees,”|EEE Trans. Pattern Anal. Mach. IntellPAMI-4 (1),
90-94(1982.

N. Ahuja and A. Rosenfeld, “A note on the use of second-order gray-
level statistics for threshold selectionlEEE Trans. Syst. Man Cy-
bern. SMC-5, 383-388(1975.

W. N. Lie, “An efficient threshold-evaluation algorithm for image
segmentation based on spatial gray level cooccurren&gtial Pro-
cess.33, 121-126(1993.

N. R. Pal and S. K. Pal, “Entropic thresholdingignal Processl6,
97-108(1989.

C. Chang, K. Chen, J. Wang, and M. L. G. Althouse, “A relative
entropy based approach in image thresholdiriRggttern Recogn27,
1275-12891994.

B. Chanda and D. D. Majumder, “A note on the use of gray level
co-occurrence matrix in threshold selectiorSignal Process.15,
149-167(1988.

A. S. Abutaleb, “Automatic thresholding of gray-level pictures using
two-dimensional entropy,Comput. Vis. Graph. Image Proces¥,
22-32(1989.

H. D. Cheng and Y. H. Chen, “Thresholding based on fuzzy partition
of 2D histogram,”Intl. Conf. Patt. Recogpp. 1616-16181998.

L. Li, J. Gong, and W. Chen, “Gray-level image thresholding based
on fisher linear projection of two-dimensional histogran®attern
Recogn.30, 743—-749(1997.

A. D. Brink, “Thresholding of digital images using two-dimensional
entropies,”Pattern Recogn25, 803—808(1992.

H. D. Cheng and Y. H. Chen, “Fuzzy partition of two-dimensional
histogram and its application to thresholdindattern Recogn32,
825-843(1999.

A. D. Brink, “Gray level thresholding of images using a correlation
criterion,” Pattern Recogn. Let®, 335-341(1989.

A. D. Brink, “Minimum spatial entropy threshold selectionEE
Proc. Vision Image Signal Procesk42, 128—-132(1995.

A. Beghdadi, A. L. Negrate, and P. V. De Lesegno, “Entropic thresh-
olding using a block source modelGraph. Models Image Process.
57, 197-205(1995.

C. K. Leung and F. K. Lam, “Maximum a posteriori spatial prob-
ability segmentation,lEE Proc. Vision Image Signal Proceski4,
161-167(1997.

N. Friel and I. S. Molchanov, “A new thresholding technique based
on random sets,Pattern Recogn32, 1507-15171999.

G. Borgefors, “Distance transformations in digital image&sgmput.
Vis. Graph. Image Proces84, 344-371(1986.

Y. Nakagawa and A. Rosenfeld, “Some experiments on variable
thresholding,”Pattern Recognl1(3), 191-204(1979.

F. Deravi and S. K. Pal, “Grey level thresholding using second-order
statistics,”Pattern Recogn. Letfl, 417-422(1983.

W. Niblack, An Introduction to Image Processingp. 115-116,
Prentice-Hall, Englewood Cliffs, N(L986.

J. Sauvola and M. Pietaksinen, “Adaptive document image binariza-
tion,” Pattern Recogn33, 225-236(2000.

J. M. White and G. D. Rohrer, “Image thresholding for optical char-
acter recognition and other applications requiring character image
extraction,”IBM J. Res. Dev27(4), 400—-411(1983.

J. Bernsen, “Dynamic thresholding of gray level image€PR’86:
Proc. Intl. Conf. Patt. Recogpp. 1251-125%1986.

Y. Yasuda, M. Dubois, and T. S. Huang, “Data compression for
check processing machines?toc. IEEE68, 874—-885(1980.

S. D. Yanowitz and A. M. Bruckstein, “A new method for image
segmentation,’'Comput. Graph. Image Proces46, 82—95(1989.

D. Shen and H. H. S. Ip, “A Hopfield neural network for adaptive
image segmentation: An active surface paradigRgttern Recogn.
Lett. 18, 37—48(1997.

N. B. Venkateswarluh and R. D. Boyle, “New segmentation tech-
nigues for document image analysismiage Vis. Computl3, 573—
583(1995.

E. Giuliano, O. Paitra, and L. Stringer, “Electronic character reading
system,” U.S. Patent No. 4,047,15ep. 1977.

Y. Yang and H. Yan, “An adaptive logical method for binarization of
degraded document image®attern Recogn33, 787—807(2000.

F. H. Y. Chan, F. K. Lam, and H. Zhu, “Adaptive thresholding by
\(/aria]t)ional method,”IEEE Trans. Image Proces$P-7, 468—473
1997).

J. Parker, “Gray level thresholding on badly illuminated images,”
|IEEE Trans. Pattern Anal. Mach. IntelPAMI-13, 813—-891(1991).

F. Chang, K. H. Liang, T. M. Tan, and W. L. Hwang, “Binarization
of document images using Hadamard multiresolution analy$,”
DAR’99: Intl. Conf. Document Anal. Recogp. 157-1601999.

A. Savakis, “Adaptive document image thresholding using fore-
ground and background clusterindCIP’98: Intl. Conf. Image Pro-
cess, Chicago, October 1998.

J. D. Yang, Y. S. Chen, and W. H. Hsu, “Adaptive thresholding
algorithm and its hardware implementatiorRattern Recogn. Lett.
15, 141-150(19949.

168/ Journal of Electronic Imaging / January 2004 / Vol. 13(1)

Sankur

125. H. Kamada and K. Fujimoto, “High-speed, high-accuracy binariza-

tion method for recognizing text in images of low spatial resolu-
tion,” ICDAR’99, Intl. Conf. Document Anal. Recogp. 139-142
(1999.

L. Eikvil, T. Taxt, and K. Moen, “A fast adaptive method for bina-
rization of document images,ICDAR’91, Intl. Conf. Document
Anal. Recog.pp. 435—-4431991).

126.

127.
gray-scale image,ICDAR’93, Intl. Conf. Document Anal. Recog.
pp. 274-2771993.

X. Zhao and S. H. Ong, “Adaptive local thresholding with fuzzy-
validity guided spatial partitioning,”ICPR’98, Intl. Conf. Patt.
Recog, pp. 988-9901998.

W. A. Yasnoff, J. K. Mui, and J. W. Bacus, “Error measures for
scene segmentationPattern Recogn9, 217-231(1977).
M. D. Levine and A. M. Nazif, “Dynamic measurement of computer
generated image segmentationdEEE Trans. Pattern Anal. Mach.
Intell. PAMI-7, 155—-164(1985.

128.

129.
130.

131.
tion,” Pattern Recogn29, 1335-13461996.
M. P. Dubuisson and A. K. Jain, “A modified Hausdorff distance for
object matching,T"CPR’94, 12th Intl. Conf. Patt. Recqp-566-569
(19949. -

D. Demir, S. Birecik, F. Kurudii, M. Sezgin, | O. Bucak, B.
Sankur, and E. Anarim, “Quality inspection in PCBs and SMDs
using computer vision techniques20th Intl. Conf. Industrial Elec.
Control Instrum, pp. 857—8601994).

H. S. Baird, “Document image defect models and their usks;”
DAR’'92, Proc. Intl. Conf. Document Anal. Recogp. 62—-67
(1992.

132.

133.

134.

135.

Technical University, Turkey2002.

136.
extraction from gray-level document imagesEEE Trans. Image
ProcessIP-10(8), 1152—-1161(2001).

137.
from check background based on a filiformity criterionEEE
Trans. Image Proces$P-7(10), 1425-14381998.

138.

type documents,Eng. Applic. Artif. Intell.13(3), 323—-343(2000.

A. H. Dekker, “Kohonen neural networks for optimal colour quan-

tization,” Network Comput. Neural Sy$, 351-367(1994).

40. C. M. Tsai and H. H. Lee, “Binarization of color document images

via luminance and saturation color feature$£EE Trans. Image
ProcessIP-11, 434—-451(Apr. 2002.

139.

141.
selection,” Comput. Vis. Graph. Image Proce&$(5), 357-370
(1994.

Mehmet Sezgin graduated from Istanbul
Technical University in 1986 from the elec-
tronic and communication department. He
completed his Msc and Phd at the same
university in 1990 and 2002, respectively.
His research areas are signal and image
processing. He has been working at the
Electronic Research Institute and Informa-
tion Technologies Research Institute of the
Turkish Scientific and Technical Research
Council since 1991.

Blilent Sankur received his BS degree in
electrical engineering at Robert College,
Istanbul, and completed his MSc and PhD
degrees at Rensselaer Polytechnic Insti-
tute, New York. He has been active at
Bogazici University in the Department of
Electric and Electronic Engineering in es-
tablishing curricula and laboratories, and
guiding research in the areas of digital sig-
nal processing, image and video compres-
sion, and multimedia systems. He was the

X
chairman of the International Telecommunications Conference and
the technical co-chairman of ICASSP 2000. He has held visiting
positions at the University of Ottawa, Canada: Istanbul Technical

University: Technical University of Delft, The Netherlands: and Ecole
Nationale Superieure des Telecommunications, France.

T. Pavlidis, “Threshold selection using second derivatives of the

Y. J. Zhang, “A survey on evaluation methods for image segmenta-

M. Sezgin, “Quantitative evaluation of image thresholding methods
and application to nondestructive testing,” PhD Thesis, Istanbul
X. Ye, M. Cheriet, and C. Y. Suen, “Stroke-model-based character

S. Djeziri, F. Nouboud, and R. Plamondon, “Extraction of signatures

C. Strouthopoulos and N. Papamarkos, “Multithresholding of mixed

N. Papamarkos and B. Gatos, “A new approach for multithreshold



